FramingHam

on multiple myeloma

Isatuximab, lenalidomide, bortezomib, and dexamethasone induction therapy fortransplant-eligible newly diagnosed multiple myeloma: final part 1 analysis of the GMMG-HD7 trial *Journal of Clinical Oncology, 2025 April 10; 43(11):1279–88*

Patient-reported outcomes following ciltacabtagene autoleucel or standard of carein patients with lenalidomide-refractory multiple myeloma (CARTITUDE-4): results from a randomised, open-label, phase 3 trial

The Lancet Haematology, 2025 January; 12(1):e45–56

Ixazomib as consolidation and maintenance versus observation in patients with relapsed multiple myeloma eligible for salvage autologous stem-cell transplantation (Myeloma XII [ACCoRD]): interim analysis of a multicentre, open-label, randomised, phase 3 trial *The Lancet Haematology*, 2024 November; 11(11):e816–29

Mechanisms of resistance against T-cell engaging bispecific antibodies in multiple myeloma: implications for novel treatment strategies

The Lancet Haematology, 2024 September; 11(9):e693-707

CURRENT TITLES

FramingHam on amyloidosis

FramingHam on atherosclerosis

FramingHam on benign haematology

FramingHam on cystic fibrosis

Framingham on diabetes

FramingHam on endocrinology

FramingHam on gastroenterology

FramingHam on gynaecology

FramingHam on haematological malignancies

FramingHam on infectious diseases

FramingHam on lung cancer

FramingHam on neurology

Framingham on respiratory diseases | asthma

FramingHam on systemic fungal infections

and many more...

OUR PURPOSE

The FramingHam series of publications is designed to meet clinical specialists' need for a reliable guide to the most important articles appearing in their field.

Each issue presents an authoritative selection from the recently published literature, with the emphasis on evidence-based medicine. Articles are recommended for inclusion by Framingham's editorial office and an advisory board headed by key opinion leaders in the relevant clinical area. Framingham's team of medical writers prepares original abstracts of these articles, in a structured format that presents the main points at a glance. Our aim is to convey the essence of each article in a concise but readable style. Issues are published every three

to six months.

ADVISORY BOARD

Jo Caers, MD PhD Haematologist, Department of Haematology, Laboratory of Haematology, CHU of Liège, University of Liège, Liège, Belgium

Cecilie Hveding, MD PhD Associate Professor in Haematology, Department of Haematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden

Thomas Lund, MD PhD
Head of the Department of
Haematology,
Vejle Hospital, Vejle,
And Senior Researcher,
Centre for Innovative Medical
Technology (CIMT),
University of Southern Denmark,
Odense, Denmark

Fredrik Schjesvold, MD PhD Head of Oslo Myeloma Center, Department of Haematology, Oslo University Hospital, and KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo, Norway

DISCLAIMER

The abstracts in this publication are prepared with care to reflect the views expressed by the author or authors of the original source material. These views are not necessarily those of the publisher. While every care is taken to avoid errors, these cannot always be avoided; readers are advised to independently validate any data and recommendations contained herein before acting on this information. The publisher disclaims any responsibility or liability for the accuracy of such information.

FramingHam

Editor

Catherine Harris Booth

Consulting Editor

Niels van de Donk, MD PhD Professor of Haematology, Cancer Center Amsterdam, Amsterdam UMC, Location VU University Medical Center, Amsterdam, the Netherlands

Medical Writers (this issue)

Milena Braga-Basaria Derek Collett David Newton

Art Design Jan van Halm

Layout and Printing

Drukmeesters, Zwijndrecht, the Netherlands

Publishing Director

Evelien Enter

Publisher

Waldemar H.G. Dobrowolski

Framingham bv
Postbus 1593
1200 BN Hilversum
The Netherlands
www.framinghampublishers.com

FramingHam *on multiple myeloma* is published by the support of Sanofi AB
Stockholm, Sweden
MAT-BE-2500656 (ver. 1) Jun 2025

© 2025 Framingham by

ISATUXIMAB, LENALIDOMIDE, BORTEZOMIB, AND DEXAMETHASONE INDUCTION THERAPY FOR TRANSPLANT-ELIGIBLE NEWLY DIAGNOSED MULTIPLE MYELOMA:

FINAL PART 1 ANALYSIS OF THE GMMG-HD7 TRIAL

Journal of Clinical Oncology, 2025 April 10; 43(11):1279-88

AUTHORS: Mai EK, Bertsch U, Pozek E, et al., for the German-Speaking Myeloma Multicenter Group (GMMG) HD7 Investigators

CENTRE FOR CORRESPONDENCE: Heidelberg Myeloma Center, Department of Internal Medicine V, Heidelberg University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany

BACKGROUND & AIM: The addition of a CD38 monoclonal antibody to triplet therapy has been shown to improve efficacy in patients with newly diagnosed multiple myeloma (NDMM). Isatuximab is an IgG1 monoclonal antibody targeting CD38, and its combination with lenalidomide, bortezomib and dexamethasone (RVd) is approved for transplant-ineligible patients with NDMM. In the initial analysis of the GMMG-HD7 trial in patients eligible for transplant, 18 weeks of induction with isatuximab plus RVd (Isa-RVd) (without posttransplant consolidation) was associated with an improved rate of minimal residual disease (MRD)-negativity over RVd alone. The aim of the current analysis was to investigate additional prespecified outcomes among GMMG-HD7 participants.

STUDY DESIGN: Multicentre, randomized, open-label, active-controlled, phase 3 trial.

ENDPOINTS: Complete response rate; MRD-negativity; progression-free survival (PFS).

METHOD: Patients aged 18–70 years with NDMM who required systemic treatment

Response rates and MRD-negativity after ASCT according to induction therapy

	Isa-RVd	RVd	Odds ratio (95% CI)	p-value
Complete response, %	43.5	34.0	1.49 (1.08-2.07)	0.013
MRD-negativity, %	66.2	47.7	2.13 (1.56-2.92)	< 0.0001
Complete response and MRD-negativity, %	38.1	25.8	1.76 (1.25–2.50)	0.001

and who were eligible for autologous haematopoietic stem-cell transplantation (ASCT) were randomized to three 6-week cycles of induction therapy with Isa-RVd (*n*=331) or RVd (*n*=329). Following single or tandem ASCT, participants underwent a second randomization to maintenance therapy with lenalidomide alone or lenalidomide plus isatuximab. This paper reports updated results from first random assignment to posttransplant.

RESULTS: Complete response and MRD-negativity rates were both significantly higher among patients randomized to induction therapy with Isa-RVd versus RVd (Table). PFS was also significantly longer in the Isa-RVd group (hazard ratio 0.70, 95% confidence interval 0.52–0.95; p=0.0184), and this was not affected by maintenance therapy group. A preplanned analysis designed to account for the second randomization confirmed a PFS benefit for Isa-RVd plus lenalidomide maintenance over RVd plus lenalidomide, with an estimated 4-year PFS rate of 74% versus 64% (p=0.016).

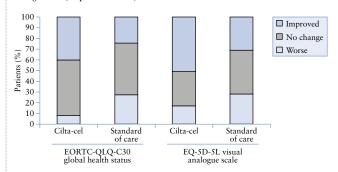
CONCLUSION: In transplant-eligible patients with NDMM, adding isatuximab to RVd for 18-week induction therapy prior to ASCT was associated with significantly deeper responses and a significant and clinically meaningful improvement in PFS, regardless of subsequent maintenance therapy.

PATIENT-REPORTED OUTCOMES FOLLOWING CILTACABTAGENE AUTOLEUCEL OR STANDARD OF CARE IN PATIENTS WITH LENALIDOMIDE-REFRACTORY MULTIPLE MYELOMA (CARTITUDE-4):

RESULTS FROM A RANDOMISED, OPEN-LABEL, PHASE 3 TRIAL

The Lancet Haematology, 2025 January; 12(1):e45-56

AUTHORS: Mina R, Mylin AK, Yokoyama H, Magen H, Alsdorf W, Minnema MC, Shune L, Isufi I, Harrison SJ, Shah UA, Schecter JM, Vogel M, Lendvai N, Gries KS, Katz EG, Slaughter A, Lonardi C, Gilbert J, Li Q, Deraedt W, Filho OC, Patel N, Florendo E, Karlin L, Weisel K CENTRE FOR CORRESPONDENCE: AOU CITTÀ DELLA SALUTE E DELLA SCIENZA DI TORINO, TURIN, ITALY


BACKGROUND & AIM: Patients with multiple myeloma often have decreased health-related quality of life (HRQoL), and it is important to consider HRQoL alongside clinical benefits when making treatment decisions. Ciltacabtagene autoleucel (ciltacel) is a dual-binding, B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy that is approved for treating lenalidomide-refractory relapsed or refractory multiple myeloma. The aim of this analysis was to understand the effects of cilta-cel on HRQoL and disease-related symptoms.

STUDY DESIGN: Randomized, open-label, phase 3 study.

ENDPOINTS: Time to symptom worsening; change from baseline in HRQoL scores.

METHOD: Patients with lenalidomiderefractory relapsed or refractory multiple

Proportion of patients with a clinically meaningful change from baseline to month 12 in EORTC QLQ-C30 global health status (≥10-point difference) and the EQ-5D-5L visual analogue scale (≥7-point difference)

myeloma with one to three previous lines of therapy were randomized to receive ciltacel (*n*=208) or standard of care (*n*=211). Time to symptom worsening was assessed using the Multiple Myeloma Symptom and Impact Questionnaire (MySIm-Q), and HRQoL using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 (EORTC QLQ-C30) and the EQ-5D-5L questionnaire.

RESULTS: At a median follow-up of 15.9 months (interquartile range 12.4-17.8 months), the median time to sustained multiple myeloma symptom worsening was 23.7 months in the cilta-cel group versus 18.9 months in the standard-of-care group (hazard ratio 0.42, 95% confidence interval 0.26-0.68; nominal p=0.0003). HRQoL improved over time in the cilta-cel group but remained near baseline in the standardof-care group, with 12-month least-squares mean changes from baseline of +10.1 versus -1.5 points for EORTC QLQ-C30 global health status and +8.0 versus +1.4 points on the EQ-5D-5L visual analogue scale, and more patients treated with cilta-cel experiencing improved scores (Figure).

CONCLUSION: Among patients with lenalidomide-refractory relapsed or refractory multiple myeloma, cilta-cel improved HRQoL and delayed symptom worsening compared with standard of care.

IXAZOMIB AS CONSOLIDATION AND MAINTENANCE VERSUS OBSERVATION IN PATIENTS WITH RELAPSED MULTIPLE MYELOMA ELIGIBLE FOR SALVAGE AUTOLOGOUS STEM-CELL TRANSPLANTATION (MYELOMA XII [ACCORD]):

INTERIM ANALYSIS OF A MULTICENTRE, OPEN-LABEL, RANDOMISED, PHASE 3 TRIAL

The Lancet Haematology, 2024 November; 11(11):e816-29

AUTHORS: COOK G, ASHCROFT AJ, SENIOR E, OLIVIER C, HOCKADAY A, RICHARDS J, CAVENAGH JD, SNOWDEN JA, DRAYSON MT, DE TUTE R, ROBERTS L, OWEN RG, YONG K, GARG M, BOYD K, SATI H, GILLSON S, COOK M, CAIRNS DA, PARRISH C, FOR THE UNITED KINGDOM MYELOMA RESEARCH ALLIANCE CENTRE FOR CORRESPONDENCE: LEEDS CANCER RESEARCH UK CLINICAL TRIALS UNIT, LEEDS INSTITUTE OF CLINICAL TRIALS RESEARCH, UNIVERSITY OF LEEDS, LEEDS, UK

BACKGROUND & AIM: There is no prospective evidence on whether consolidation and maintenance strategies improve the outcomes of patients with multiple myeloma (MM) following salvage autologous haematopoietic stem-cell transplantation (HSCT). Ixazomib is an oral second-generation proteasome inhibitor that has shown efficacy as a maintenance treatment following first-line autologous HSCT. The aim of this study was to investigate the efficacy of an ixazomib-containing consolidation and maintenance strategy following salvage autologous HSCT in patients with MM.

STUDY DESIGN: Interim analysis of a multicentre, open-label, randomized, controlled, phase 3 trial.

ENDPOINTS: Primary: progression-free survival (PFS). Secondary: overall survival; safety.

METHOD: Adults with relapsed MM who required treatment for first progressive disease at least 12 months after first autologous HSCT were initially randomized to receive either conventional autologous HSCT with melphalan or augmented autologous HSCT with melphalan plus ixazomib. This report concerns the second randomization, in which patients were assigned to consolidation with ixazomib, thalidomide and dexamethasone, followed by maintenance with ixazomib alone (*n*=103)

until disease progression or intolerance, or observation (n=103).

RESULTS: Over a median followup of 27 months (interquartile range 13-38 months), median PFS was 20 months in the consolidation and maintenance group versus 13 months in the observation group (hazard ratio 0.55, 95% confidence interval 0.39–0.78; p=0.0006). The benefit of consolidation and maintenance on PFS was observed in most subgroups, with no effect of age, disease stage or previous proteasome inhibitor exposure. Median overall survival was not reached in either group and the 2-year overall survival rate was 91.1% in the consolidation and maintenance group and 92.0% in the observation group (HR 0.48, 95% CI 0.21-1.09). Serious adverse events occurred in 32% and 7% of patients, respectively. In the consolidation and maintenance group, the most common any-grade adverse events were peripheral sensory neuropathy (57%), fatigue (45%) and upper respiratory tract infection (45%), and the most common grade 3 or worse adverse events were upper respiratory tract infection (8%) and thrombocytopenia (5%); there were no treatment-related deaths.

CONCLUSION: At this interim analysis, patients with MM who received consolidation and maintenance treatment with an ixazomib-containing regimen following salvage autologous HSCT had superior PFS to those managed with observation.

MECHANISMS OF RESISTANCE AGAINST T-CELL ENGAGING BISPECIFIC ANTIBODIES IN MULTIPLE MYELOMA:

IMPLICATIONS FOR NOVEL TREATMENT STRATEGIES

The Lancet Haematology, 2024 September; 11(9):e693-707

AUTHORS: VAN DE DONK NW, CHARI A, MATEOS MV
CENTRES: DEPARTMENT OF HEMATOLOGY, AMSTERDAM UNIVERSITY MEDICAL CENTER, VRIJE UNIVERSITEIT
AMSTERDAM; CANCER CENTER AMSTERDAM, CANCER BIOLOGY AND IMMUNOLOGY, AMSTERDAM, THE NETHERLANDS;
HELEN DILLER FAMILY COMPREHENSIVE CANCER CENTER, UNIVERSITY OF CALIFORNIA SAN FRANCISCO, SAN FRANCISCO,
CALIFORNIA, USA; INSTITUTO DE INVESTIGACIÓN BIOMÉDICA DE SALAMANCA, CENTRO DE INVESTIGACIÓN DEL CÁNCER,
CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED CÁNCER, UNIVERSITY HOSPITAL OF SALAMANCA, SALAMANCA, SPAIN

BACKGROUND & AIM: T-cell redirecting bispecific antibodies can be effective in treating multiple myeloma (MM), and work by simultaneously binding to antigens on MM cells and to CD3 on T cells. Currently approved agents include teclistamab and elranatamab (which target B-cell maturation antigen) and talquetamab (which targets G-protein-coupled receptor, class C, group 5, member D or GPRC5D), while others are in development. However, not all patients respond to this approach and most ultimately relapse because of acquired resistance, the mechanisms of which involve tumour-related features, T-cell characteristics and the immunosuppressive tumour microenvironment. The aim of this article was to review mechanisms of resistance against bispecific antibodies in MM.

ARTICLE TYPE: Expert review.

FINDINGS: Tumour-related features that can result in resistance to bispecific antibodies include low expression of the target antigen. In this case, higher antitumour activity might be achieved by using a bispecific antibody with two binding sites on the same antigen (e.g. alnuctamab, which targets B-cell maturation antigen and CD3) or by combining therapy with an agent that increases expression levels (e.g. γ-secretase inhibitors). Another potential mechanism of resistance is antigen loss, which can be caused by various genomic events. This may be prevented by using a trispecific antibody or two bispecific

antigens to target two tumour-associated antigens. Other tumour-related factors include a high tumour burden and the expression of T-cell inhibitory ligands.

Reductions in T-cell numbers and function are seen in MM, and may be aggravated by continuous treatment with bispecific antibodies, leading to chronic T-cell stimulation and ultimately T-cell exhaustion. There are several potential strategies to overcome this, including using combination therapy, alternative bispecific antibody formats or new approaches to administration. In particular, antitumour activity could be improved by targeting inhibitory pathways (e.g. by immune checkpoint blockade) or costimulatory pathways.

Finally, the presence of immune suppressor cells and bone marrow stromal cells in the tumour microenvironment can contribute to resistance. Regulatory T cells and granulocytic myeloid-derived suppressor cells can impair the cytotoxic effects and proliferative ability of T cells, while bone marrow stromal cells impair the activity of cytotoxic agents and immunotherapies. One potential therapeutic strategy is to coadminister bispecific antibodies with CD38-targeting antibodies to remove CD38⁺ immune suppressor cells, and thereby increase T-cell numbers and T-cell activity.

CONCLUSION: Improved knowledge of the mechanisms contributing to resistance to bispecific antibodies in MM can suggest therapeutic strategies to overcome these. Commober informacion 188C 188 (institution) in 2 and common to 3 miles of more miles for the common of 10 mg of states commits (2 mg of polycoclored control to 3 mg of states commits (2 mg of polycoclored control to 3 mg of states commits (2 mg of polycoclored control to 3 mg of states commits (2 mg of polycoclored control to 3 mg of states commits (2 mg of polycoclored control to 3 mg of polycoclored control t

Netherlands: L01FC02. U.R. Sarclisa wordt vergoed via add-on. Voor prijzen zie de Z-index taxe. Voor meer informatie zie de SmPC op http://www.geneesmiddeleninformatiebank.nl. Lokale vertegenwoordiger: Sanofi B.V. Paasheuvelweg 25, 1105 BP Amsterdam. Tel: +31 (0)20 2454000.

Belgium:

Prescription medication. Reimbursed. The SmPC is available on https://www.afmps.be/. In Belgium Sarclisa is provided by Sanofi Belgium NV, Leonardo Da Vincilaan 19 1831 Diegem, tel +32 27 10 54 00. For questions on our medicinal products, please contact: medical_info.belgium@sanofi.com.

Pakningsstørrelser: 1 htgl. koncentrat (5 ml) til infusionsvæske, opløsning (Vnr. 45 89 04). 1 htgl. koncentrat (25 ml) til infusionsvæske, opløsning (Vnr. 13 30 49). For dagsaktuel pris se www.medicin-priser.dk Udlevering: BEGR. Tilskud: Ikke tilskudsberettiget. Indehaver af markedsføringstilladelsen: Sanofi Winthrop Industrie, 82 avenue Raspail, 94250 Gentilly, France. De med * markerede afsnit er omskrevet/forkortet i forhold til det godkendte produktresumée. Produktresuméet kan vederlagsfrit rekvireres hos Sanofi A/S, Lyngbyvej 2, 2100 København Ø.

Refusjon: H-resept: L01F C02. Refusjonsberettiget bruk: Isatuxsimab (Sarclisa) som kombinasjonsbehandling med karfilzomib og deksametason ved myelomatose, etter minst en tidligere behandling. Som kombinasjon med bortezomib og deksametason som førstelinjebehandling av voksne pasienter med nydiagnostisert myelomatose hvor autolog stamcelletransplantasjon ikke er aktuelt Pakninger og priser: 5 ml (hettegl.) kr 7908,50. 25 ml (hettegl.) kr 39397,30. Reseptstatus: C Lokal representant: sanofi-aventis Norge AS, Prof. Kohts vei 5-17, 1325 Lysaker. Tlf: +47 67 10 71 00. Fullstendig preparatomtale finnes på www.legemiddelsok.no/.

Prescription medication. Not reimbursed. L01FC02. The SmPC is available on www.fass.se. In Sweden Sarclisa is provided by Sanofi AB, Box 300 52, 104 25 Stockholm, tel +46 8 634 50 00. For questions on our medicinal products, please contact infoavd@sanofi.com.

Finland Pakkaukset ja hinnat: Sarclisa TMH 100 mg 558,04 €, 500 mg 2790,18 € Reseptilääke, sairaalalääke. Huom. Tutustu valmisteyhteenvetoon ennen lääkkeen määräämistä. Lisätiedot: www.sanofi.fi.